Association Mapping in Families

Gonçalo Abecasis University of Oxford

Linkage Analysis

- Sharing between relatives
 - Identifies large regions
 - Include several candidates
- Complex disease
 - Scans on sets of small families popular
 - No strong assumptions about disease alleles
 - Low power
 - Limited resolution

Association Analysis

- Sharing between unrelated individuals
 - Trait alleles originate in common ancestor
 - High resolution
 - Recombination since common ancestor
 - Large number of independent tests
- Powerful if assumptions are met
 - Same disease haplotype shared by many patients
- Sensitive to population structure

Stratification vs Disequilibrium

Ancestor	
Present-day	

Disequilibrium Mapping

- Control for possible population structure
 - Distinguish linkage disequilibrium from other types of association
- Family-based association analysis
 - Using families collected for linkage mapping
- Powerful if assumptions are met
 - Same disease haplotype shared by many patients
- High-resolution

Essential Notation

- families
- $j = 1 \dots n_i$ offspring in family i
- quantitative phenotype • *Y*_{ii}
- *g*_{ii}
 - $g_{iFr}g_{iM}$
 - π_{ijk}
 - *φ*_{ijk}

no. of '1' alleles at marker parental genotypes, optional IBD between *j* and *k* in family i kinship between *j* and *k* in family i

Controlling for Stratification

- If stratum were known...
 - For each individual genotype (g_{ii})
 - Average number of alleles in a strata (b_{ii})
 - Adjust for stratum differences $(w_{ij} = g_{ij} b_{ij})$

$$\hat{y}_{ij} = \mu + \hat{\beta}_b b_{ij} + \hat{\beta}_w w_{ij}$$

- How to define stratum then?
 - Use family data to estimate b_{ij}

b_{ii} as Family Control

- Expected genotype for each individual
 - Ancestors
 - Siblings
- Informative individuals
 - Genotype may differ from expected
 - Have heterozygous ancestor in pedigree

Allowable Family Structures

ბ₁甴 Ⴙ 1994 $\perp \perp$

$$w_{ij} = g_{ij} - b_{ij}$$

Extended Families

$$b_{ij} = \begin{cases} \frac{b_{iF_j} + b_{iM_j}}{2} \\ \frac{sibship}{\sum_{k} \frac{g_{ik}}{n_{sibs}}} \\ g_{ij} \\ undefined \end{cases}$$

average of parental controls

average of sibling genotypes

self - genotype

otherwise

Allowing for Related Data

- Similarities between individuals
 - Variance—covariance matrix
- Major gene, polygenic, environment

$$\Omega_{ijk} = \begin{cases} \sigma_a^2 + \sigma_g^2 + \sigma_e^2 & \text{if } j = k \\ \pi_{ijk} \sigma_a^2 + 2\varphi_{ijk} \sigma_g^2 & \text{if } j \neq k \end{cases}$$

Likelihood function

Multivariate Normal Distribution Defines asymptotic significance levels

$$L = \prod_{i} (2\pi)^{-n_{i}/2} |\hat{\Omega}_{i}|^{-1/2} e^{-1/2[(\mathbf{y}_{i} - \hat{\mathbf{y}}_{i})'\hat{\Omega}_{i}^{-1}(\mathbf{y}_{i} - \hat{\mathbf{y}}_{i})]}$$

$$\chi^2 = 2 \ln \left(\frac{L_{\text{full model}}}{L_{\text{sub-model}}} \right)$$

Parameter Derivations

"I think you should be more explicit here in step two."

© 1998 Sidney Harris

 $Model = (\mu, \beta_b, \beta_w, \sigma_e^2, \sigma_g^2, \sigma_a^2)$

 $\sigma_a^2 = V_{QTL} - 2pqa$

Exact Permutation Test

In each family, w_i = [w_{i1}, w_{i2} ...] is the pattern of allelic transmission

• \mathbf{w}_i and $-\mathbf{w}_i$ are equally likely (H_o)

- Null distribution of the data
 - Randomly permute any set families by replacing each w_i with itself or -w_i with equal probability
 - The permuted data sets define the null distribution of the maximum likelihood statistic
- Empirical significance levels

Application: Angiotensin-1

- British population
- Circulating ACE levels
 Normalized separately for males / females
- 10 di-allelic polymorphisms
 - 26 kb
 - Common
 - In strong linkage disequilibrium
- Keavney et al, HMG, 1998

Haplotype Analysis

3 clades

Α

- All common haplotypes
- >90% of all haplotypes

- Equal phenotypic effect^B
- Functional variant on right
- Keavney et al (1998)

Drawing Conclusions

--- for Linkage --- for Association --- against Complete LD

Parameter Estimates

Estimates

- Total linkage (σ²_a)
- Linkage due to LD (σ^2_{a*LD})
- Effect size at marker (β_w)
- Depend on
 - QTL allele frequencies (p,q)
 - QTL effect (a)
 - Disequilibrium (D)
 - Marker allele frequencies (r,s)

Useful diagnostics

- A bit of algebra
- Provide indicator of distance
 - Minimum D' (D'_{min})
- Select next markers
 - Range for QTL alleles
 (p_{min}, p_{max})

Application to T-5991C

- LOD scores
 - ~7 linkage
 - ~9 association
 - ~1 linkage minus association
- Trait locus predictions
 - In greater than 78% disequilibrium
 - Minor allele frequency between .15 and .48
- Compare to I/D and neighbors

ACE: D'_{min}, p_{min} and p_{max}

	Expected	Actual				
	T-5991C	G2215A	I/D	G2350A		
D'	> 0.78	0.78	0.82	0.85		
Minor allele	.15–.48	.45—.50	.45–.50	.45–.50		

Finer mapping

- 3 mutations (inc. I/D) explain all linkage
 - UK population
- How to identify causal variant?
 - Population with more haplotype diversity
 - Jamaican sample
 - Colin McKenzie, University of West Indies, Jamaica
 - Same di-allelic polymorphisms

Example Summary

- Agrees with haplotype analysis
- Distinguishes complete and incomplete disequilibrium
 - Measure of distance for incomplete LD
 - Indicator of trait allele frequencies
- Typical or fairy-tale?

Study design

- What markers?
 - Effect of disequilibrium
 - Effect of allele frequencies
- Family sample
 - What size families?
 - Parents or no parents?
- Effect of phenotypic selection

Sensitivity to Disequilibrium

Amount of Disequilibrium

	0%	25%	50%	75%	100%
480 triads	0	2	20	70	97
240 sib-pairs	0	2	23	73	98
120 sib-quads	0	3	27	76	98
Estimate of a	0	1.1	2.2	3.4	4.5

Power for α =0.001, h² = .1, s² = .3, θ = 0.

Average additive genetic value estimated at the marker.

Effect of Family Structure

Trios For Genome-Wide Scan

Disease Allele Frequency	Marker Allele Frequency				
	0.1	0.3	0.5	0.7	0.9
0.1	248	626	1306	2893	10830
0.3	1018	238	466	996	3651
0.5	2874	702	267	556	2002
0.7	9169	2299	925	337	1187
0.9	73783	18908	7933	3229	616

 $\lambda s = 1.5, \alpha = 5 \times 10^{-8}$, Spielman TDT (Müller-Myhsok and Abel, 1997)

Effect of Allele Frequencies

Effect of Selection

References

Fulker et al (1999) Am J Hum Genet 66:259-267 Abecasis et al (2000) Am J Hum Genet 66:279-292 Abecasis et al (2000) *Eur J Hum Genet* **8**:545-551 Cardon and Abecasis (2000) Behav Genet 30:235-243 McKenzie et al (2001) *Hum Mol Genet* **10**:1077-84 Abecasis et al (2001) Am J Hum Genet 68:1463-74

www.sph.umich.edu/csg/abecasis

💥 QTDT Home Page - Netscape							
<u>File Edit ⊻iew Go Communicator H</u> e	lp						
Back Forward Reload this page	h Search Netscap	a Print	💕 Security	👌. Shop	atop (1997)	N	
🕴 🌿 Bookmarks 🙏 Netsite: http:/	7www.well.ox.ac.uk/asthm	ia/QTDT/				💌 🍘 What's Related	
🚪 🚴 Instant Message 🛛 WebMail 🖳	Contact 🖳 People	🖳 Yellow Page	is 🖳 Do	wnload	🖳 Find Sites	📫 Channels	
CTDT Linkage Disequilibrium Analyses for Quantitative Traits QTDT provides a convenient one-stop interface for family based tests of linkage disequilibrium. The general model described by <u>Abecasis (1999)</u> applies to families with and without parental data, and includes an optional permutation framework for exact p-values. The tests described by Allison (TDTQ5, 1997),							
Rabinowitz (1997), Monks (1998) and Fulker (1999) are also supported. Background Information Read about family based disequilibrium analysis and QTDT.							
Quick-Start Tutorial	<u>Quick-Start Tutorial</u> Take a tour of the QTDT package. Recommended.						
Browse documentation	The online documentation includes information on file formats and known bugs.						
Download programs	Download the latest version of the programs. [Updated February 2000]						
<u>Registration form</u> If you decide to use QTDT, please take a minute to let us know. <u>University of Oxford Wellcome Trust Centre Asthma Genetics</u>							
Reload the cu	irrent page			2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		🍇 🖓 🖬 🏑 📝	