Calculation of IBD State Probabilities

Gonçalo Abecasis University of Michigan

Human Genome

- Multiple chromosomes
 - Each one is a DNA double helix
 - 22 autosomes
 - Present in 2 copies
 - One maternal, one paternal
 - 1 pair of sex chromosomes
 - Females have two X chromosomes
 - Males have one X chromosome and one Y chromosome
- Total of $\sim 3 \times 10^9$ bases

Human Variation

• When two chromosomes are compared most of their sequence is identical

- Consensus sequence

- About 1 per 1,000 bases differs between pairs of chromosomes in the population
 - In the same individual
 - In the same geographic location
 - Across the world

Aim of Gene Mapping Experiments

- Identify variants that control interesting traits
 - Susceptibility to human disease
 - Phenotypic variation in the population
- The hypothesis
 - Individuals sharing these variants will be more similar for traits they control
- The difficulty...
 - Testing over 4 million variants is impractical...

Identity-by-Descent (IBD)

• A property of chromosome stretches that descend from the same ancestor

- Allows surveys of large amounts of variation even when a few polymorphisms measured
 - If a stretch is IBD among a set of individuals, all variants within it will be shared

A Segregating Disease Allele

Marker Shared Among Affecteds

Genotypes for a marker with alleles $\{1,2,3,4\}$

Segregating Chromosomes

IBD can be trivial...

A little more complicated...

And even more complicated...

Bayes Theorem for IBD Probabilities

$$P(IBD = i \mid G) = \frac{P(IBD = i, G)}{P(G)}$$
$$= \frac{P(IBD = i)P(G \mid IBD = i)}{P(G)}$$
$$= \frac{P(IBD = i)P(G \mid IBD = i)}{\sum_{j} P(IBD = j)P(G \mid IBD = j)}$$

P(Marker Genotype|IBD State)

		IBD		
Sib	CoSib	0	1	2
(a,b)	(c,d)	papbpcpd	0	0
(a,a)	(b,c)	$p_a^2 p_b p_c$	0	0
(a,a)	(b,b)	$p_{a}^{2}p_{b}^{2}$	0	0
(a,b)	(a,c)	$p_a^2 p_b p_c$	$p_a p_b p_c$	0
(a,a)	(a,b)	$p_a^3 p_b_2$	$p_a^2 p_b$	0
(a,b)	(a,b)	$p_a^2 p_b^2$	$p_{a}p_{b}^{2}+p_{a}^{2}p_{b}$	$p_a p_b$
(a,a)	(a,a)	p_a^4	p_a^3	$p_a p_b p_a^2$
Prior Pi	robability	1⁄4	1/2	1/4

$$P(G | IBD = 0) = p_1^4 = \frac{1}{16}$$
$$P(G | IBD = 1) = p_1^3 = \frac{1}{8}$$
$$P(G | IBD = 2) = p_1^2 = \frac{1}{4}$$

$$P(G) = \frac{1}{4}p_1^4 + \frac{1}{2}p_1^3 + \frac{1}{4}p_1^2 = \frac{9}{64}$$

$$P(IBD=0|G) = \frac{\frac{1}{4}p_1^4}{P(G)} = \frac{1}{9}$$
$$P(IBD=1|G) = \frac{\frac{1}{2}p_1^3}{P(G)} = \frac{4}{9}$$
$$P(IBD=2|G) = \frac{\frac{1}{4}p_1^2}{P(G)} = \frac{4}{9}$$

$$p_1 = 0.5$$

The Recombination Process

- The recombination fraction θ is a measure of distance between two loci
 - Probability that different alleles from different grand-parents are inherited at some locus
- It implies the probability of change in IBD state for a pair of chromosomes in siblings: $\psi = (1 - \theta)^2 + \theta^2$

Transition Matrix for IBD States

• Allows calculation of IBD probabilities at arbitrary location conditional on linked marker

– Depends on recombination fraction $\boldsymbol{\theta}$

	_	Conditional IBD Probabilities at distance θ		
	_	0	1	2
Known	0	$(1-\psi)^2$	$2\psi(1-\psi)$	ψ^2
IBD	1	$\psi(1-\psi)$	$(1-\psi)^2 + \psi^2$	ψ(1-ψ)
State	2	ψ^2	$2\psi(1-\psi)$	$(1-\psi)^{2}$

$$\psi = (1 - \theta)^2 + \theta^2$$

Moving along chromosome

- Input
 - Vector v of IBD probabilities at location A
 - Matrix T of transition probabilities $A \rightarrow B$
- Output
 - Vector v' of probabilities at location B
 - Conditional on probabilities at location A
- For k IBD states, requires k² operations

$$L(\mathbf{v'}_i | \mathbf{v}) = \sum_{j} L(\mathbf{v}_j) T(\mathbf{v}_i \to \mathbf{v'}_j, \theta)$$

Combining Information From Multiple Markers

$\underline{\mathbf{P}}(\mathbf{G}_1 \mathbf{IBD}_1=0)$	$\underline{P}(G_1 IBD_1 = 1)$	$\underline{P}(G_1 IBD_2=2)$	
	* T		
$\underline{\mathbf{P}}(\mathbf{G}_1 \mathbf{IBD}_2=0,\boldsymbol{\theta}_{1,2})$	$\underline{\mathbf{P}}(\mathbf{G}_1 \mathbf{IBD}_2=1,\theta_{1,2})$	$\underline{P}(G_1 IBD_2 = 2, \theta_{1,2})$	
	0		
$\underline{\mathbf{P}}(\mathbf{G}_2 \mathbf{IBD}_2=0)$	$\underline{P}(G_2 IBD_2 = 1)$	$\underline{P}(G_2 IBD_2 = 2)$	
	=		
$P(G_1, G_2 IBD_2 = 0, \theta_{1,2})$	$P(G_1, G_2 IBD_2 = 2, \theta_{1,2})$	$P(G_1, G_2 IBD_2 = 2, \theta_{1,2})$	

Baum Algorithm

• Markov Model for IBD

- Vectors \mathbf{v}_{ℓ} of probabilities at each location - Transition matrix **T** between locations

• Key equations...

$$-\mathbf{v}_{\ell|1..\ell} = \mathbf{v}_{\ell-1|1..\ell-1} \mathbf{T} \cdot \mathbf{v}_{\ell}$$
$$-\mathbf{v}_{\ell|\ell..m} = \mathbf{v}_{\ell+1|\ell+1..m} \mathbf{T} \cdot \mathbf{v}_{\ell}$$
$$-\mathbf{v}_{\ell|1..m} = (\mathbf{v}_{1..\ell-1} \mathbf{T}) \cdot \mathbf{v}_{\ell} \cdot (\mathbf{v}_{\ell+1..1} \mathbf{T})$$

Pictorial Representation

• Single Marker

• Left Conditional

• Right Conditional

• Full Likelihood

Complexity of the Problem in Larger Pedigrees

- For each person
 - 2 meioses, each with 2 possible outcomes
 - -2n meioses in pedigree with *n* non-founders
- For each genetic locus
 - One location for each of *m* genetic markers
 - Distinct, non-independent meiotic outcomes
- Up to 4^{*nm*} distinct outcomes

Elston-Stewart Algorithm

- Factorize likelihood by individual
 - Each step assigns phase
 - for all markers
 - for one individual
 - Complexity $\propto n \cdot e^m$
- Small number of markers
- Large pedigrees
 - With little inbreeding

Lander-Green Algorithm

- Factorize likelihood by marker
 - Each step assigns phase
 - For one marker
 - For all individuals in the pedigree
 - Complexity $\propto m \cdot e^n$
- Strengths
 - Large number of markers
 - Relatively small pedigrees
- Natural extension of Baum algorithm

Other methods

- Number of MCMC methods proposed
 - Simulated annealing, Gibbs sampling
 - ~Linear on # markers
 - ~Linear on # people
- Hard to guarantee convergence on very large datasets
 - Many widely separated local minima

Lander-Green inheritance vector

- At each marker location ℓ
- Define inheritance vector \mathbf{v}_{ℓ}
 - -2^{2n} elements
 - Meiotic outcomes specified in index bit
 - Likelihood for each gene flow pattern
 - Conditional on observed genotypes at location ℓ

Lander-Green Markov Model

• Transition matrix $\mathbf{T}^{\otimes 2n}$

$$\mathbf{T} = \begin{bmatrix} 1 - \theta & \theta \\ \theta & 1 - \theta \end{bmatrix}$$

•
$$\mathbf{v}_{\ell|1..\ell} = \mathbf{v}_{\ell-1|1..\ell-1} \mathbf{T}^{\otimes 2n} \mathbf{v}_{\ell}$$

•
$$\mathbf{v}_{\ell|\ell..m} = \mathbf{v}_{\ell+1|\ell+1..m} \mathbf{T}^{\otimes 2n} \mathbf{v}_{\ell}$$

•
$$\mathbf{v}_{\ell|1..m} = (\mathbf{v}_{1..\ell-1} \mathbf{T}^{\otimes 2n}) \circ \mathbf{v}_{\ell} \circ (\mathbf{v}_{\ell+1..1} \mathbf{T}^{\otimes 2n})$$

MERLIN

Multipoint Engine for Rapid Likelihood Inference

- Linkage analysis
- Haplotyping
- Error detection
- Simulation
- IBD State Probabilities

Intuition: \mathbf{v}_{ℓ} has low complexity

- Likelihoods for each element depend on:
 - Is it consistent with observed genotypes?
 - If not, likelihood is zero
 - What founder alleles are compatible?
 - Product of allele frequencies for possible founder alleles
- In practice, much fewer than 2^{2n} outcomes
 - Most elements are zero
 - Number of distinct values is small

a) bit-indexed array

Abecasis et al (2002) Nat Genet 30:97-101

Tree Complexity: Microsatellite

Missing			Total Nod	es	Leaf
Genotypes	Info	Mean	Median	95% C.I.	Nodes
4-allele marker with ec	quifrequent	alleles			
-	0.72	154.7	72	64 - 603	5.2
5%	0.68	245.2	122	64 – 1166	9.9
10%	0.64	446.3	171	65 – 2429	24.1
20%	0.55	1747.4	405	69 – 15943	107.3
50%	0.28	19880.6	2882	154 –140215	2574.5

(Simulated pedigree with 28 individuals, 40 meioses, requiring $2^{32} = \sim 4$ billion likelihood evaluations using conventional schemes)

Intuition: Trees speedup convolution

- Trees summarize redundant information
 - Portions of vector that are repeated
 - Portions of vector that are constant or zero
- Speeding up convolution
 - Use sparse-matrix by vector multiplication
 - Use symmetries in divide and conquer algorithm

Elston-Idury Algorithm

Uses divide-and-conquer to carry out matrix-vector multiplication in $O(N \log N)$ operations, instead of $O(N^2)$

Test Case Pedigrees

Timings – Marker Locations

	Top Generation Genotyped			
	A (x1000)	В	С	D
Genehunter	38s	37s	18m16s	*
Allegro	18s	2m17s 3	h54m13s	*
Merlin	11s	18s	13m55s	*

	Top Generation Not Genotyped			
	A (x1000)	В	С	D
Genehunter	45s	1m54s	*	*
Allegro	18s	1m08s ′	1h12m38s	*
Merlin	13s	25s	15m50s	*

Intuition: Approximate Sparse T

- Dense maps, closely spaced markers
- Small recombination fractions θ
- Reasonable to set θ^k with zero – Produces a very sparse transition matrix
- Consider only elements of **v** separated by <*k* recombination events
 - At consecutive locations
Additional Speedup...

	Time	Memory
Exact	40s	100 MB
No recombination	<1s	4 MB
<1 recombinant	2s	17 MB
≤2 recombinants	15s	54 MB
Genehunter 2.1	16min	1024MB

Keavney et al (1998) ACE data, 10 SNPs within gene, 4-18 individuals per family

Capabilities

- Linkage Analysis
 QTL
 - Variance Components
- Haplotypes
 - Most likely
 - Sampling
 - All

- Error Detection
 - Most SNP typing errors are Mendelian consistent
- Recombination
 - No. of recombinants per family per interval can be controlled

• Others: pairwise and larger IBD sets, info content, ...

MERLIN Website

www.sph.umich.edu/csg/abecasis/Merlin

- Reference
- FAQ

- Tutorial
 - Linkage
 - Haplotyping
 - Simulation
 - Error detection
 - IBD calculation

- Source
- Binaries

Input Files

- Pedigree File
 - Relationships
 - Genotype data
 - Phenotype data
- Data File
 - Describes contents of pedigree file
- Map File
 - Records location of genetic markers

Describing Relationships

	FAMILY	PERSON	FATHER	MOTHER	SEX
	example	granpa	unknown	unknown	m
ЪЮ	example	granny	unknown	unknown	f
	example	father	unknown	unknown	m
гО	example	mother	granny	granpa	f
L	example	sister	mother	father	f
	example	brother	mother	father	m

Example Pedigree File

<contents of example.ped> 1 1 1 3 3 0 0 1 Х ХХ 1 2 0 0 2 1 x 44 ХХ 3 0 0 1 1 1 x 12 ХХ 1 2 2 1 x 43 1 4 ХХ 3 4 2 2 1.234 1 3 2 2 1 5 4 1 2 4.321 2 4 2 2 3 6 1 <end of example.ped>

Encodes family relationships, marker and phenotype information

Data File Field Codes

Code	Description
Μ	Marker Genotype
А	Affection Status.
Т	Quantitative Trait.
С	Covariate.
Ζ	Zigosity.
S[n]	Skip n columns.

Example Data File

<contents of example.dat>

- T some_trait_of_interest
- M some_marker
- M another marker

<end of example.dat>

Provides information necessary to decode pedigree file

Example Map File

<contents of example.map>CHROMOSOMEMARKERPOSITION2D2S160160.02D2S308165.0

<end of example.map>

. . .

Indicates location of individual markers, necessary to derive recombination fractions between them

Example Data Set: Angiotensin-1

- British population
- Circulating ACE levels

 Normalized separately for males / females
- 10 di-allelic polymorphisms
 - 26 kb
 - Common
 - In strong linkage disequilibrium
- Keavney et al, HMG, 1998

Haplotype Analysis

- 3 clades
 - All common haplotypes
 - >90% of all haplotypes

- Equal phenotypic effect
- Functional variant on right
- Keavney et al (1998)

Objectives of Exercise

• Verify contents of input files

• Calculate IBD information using Merlin

• Time permitting, conduct simple linkage analysis

Things to think about...

- Allele Sharing Among Large Sets
 The basis of non-parametric linkage statistics
- Parental Sex Specific Allele Sharing
 Explore the effect of imprinting
- Effect of genotyping error
 - Errors in genotype data lead to erroneous IBD